
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A 2 5 7 856

DTIC
ELECTE

S DECO04 19921 D
04 1992 THESIS

AN/SLQ-32 EW SYSTEM MODEL: AN EXPANDABLE,
OBJECT-ORIENTED, PROCESS-BASED SIMULATION

by

Chen-Kuo Li

September 1992

Thesis Advisor: Michael P. Bailey

Approved for public release; distribution is unlimited.

92-30827

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMB No 070407•88

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARK.NGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION:AVAiLABILITY OF REPORT

Approved for public release; distribution2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School EW

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Cla'sification)

AN/SLQ-32 EW SYSTEM MODEL: AN EXPANDABLE, OBJECT-ORIENTED, PROCESS-BASED SIMULATION
17. PERSONAL AUTHOR(S)

Li, Chen-Kuo
13a. TYPE OF REPORT N TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Master's thesis I ROM TO _, 1992, September 96

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the
official or position of the Department Of Defense or the U.S.Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Object-Orientation, MODSIM, AN/SLQ-32 EW SYSTEM model,

I Programming, Process-based, Simulation.

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis documents the design and implementation of a simulation of AN/SLQ-32 Fleet
Defense EW System in a modern, object-oriented, process-based simulation language
called MODSIM II by CACI Corporation of La jolla, CA. The main intent of the simulation
is to build a model that simulates an AN/SLQ-32 EW system's capability in an
environment having an arbitrary number of different emitters. The trials presented in
this work use 15 distinct emitters. This simulation model is designed to provide a
foundation that not only can be used to study AN/SLQ-32 EW system reliability, but also
can be built upon as a part of a wargame or modified to study varied topics such as
training effectiveness of naval EW system operators.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

[RUNCLASSIFIED/UNLIMITED 0- SAME AS RPT -IJ DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Michael P. Bailey (408) 646-2035 OR/BA
00 Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PACE

S/N 0102-LF-014-6603 Unclassified

i

Approved for public release; distribution is unlimited.

AN/SLQ-32 EW SYSTEM MODEL:
AN EXPANDABLE, OBJECT-ORIENTED, PROCESS-BASED

SIMULATION

by

Chen-Kuo Li
Lieutenant Commander, Taiwan Navy
B.S., Chinese Naval Academy, 1982

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEM ENGINEERING
(ELECTRONIC WARFARE)

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: 6/1FA'--k/* L).)2 Z

Chen-Kuo Li

Approved by: Afo

i.1a e, •hesis1 sor

_-Alan R. Washburn, Second Reader

"Jeffrýy B. Krrr, Chairman

Electronic Warfare Academic Group

ABSTRACT

This thesis documents the design and implementation of a simulation of AN/SLQ-

32 Fleet Defense EW System in a modem, object-oriented, process-based simulation

language called MODSIM II by CACI Corporation of La Jolla, CA. The main intent of

the simulation is to build a model that simulates an AN/SLQ-32 EW system's capability

in an environment having an arbitrary number of different emitters. The trials presented

in this work use 15 distinct emitters. This simulation model is designed to provide a

foundation that not only can be used to study AN/SLQ-32 EW system reliability, but also

can be built upon as a part of a wargame or modified to study varied topics such as

training effectiveness of naval EW system operators.

Accesion For

NTIS CRA&M
DTIC TAB
U0iannoui iced [
Jkstihcation

By
Di-t, ibution f

AvalIabiflity Coz.-.s

SAv,.11 ,•? ~

A-I!

iiW

TABLE OF CONTENTS

I. INTRODUCTION 1

II. AN/SLQ-32 EW SYSTEM DESCRIPTION 4

A. RECEIVER-ANTENNA GROUP 7

1. Band 2/3 Angle and Amplitude Processing . 8

a. Direction Finding Receiver (DFR) . . . 8

b. Angle Encoder 9

2. Band 2/3 Frequency Processing 10

a. Semi-Omni Antenna 10

b. Instantaneous Frequency

Measurement/Multiplexer (IFM/MUX) . . . 10

c. Instantaneous Frequency

Measurement/Coarse Frequency Receiver

(IFM/CFR) 11

B. DISPLAY-PROCESSOR GROUP 12

1. Digital Presorter 12

2. Digital Processor Unit 14

III. MODSIM II THE MODULAR, OBJECT-ORIENTED LANGUAGE 15

A. MODULAR 15

B. OBJECT-ORIENTED 15

C. STRONGLY TYPED 16

iv

D. BLOCK-STRUCTURED 16

E. SIMULATION 16

IV. THE TEST SIMULATION MODEL 18

A. OVERVIEW 18

B. SIMULATION EXECUTION 19

C. SIMULATION DESIGN 19

1. Modules 20

a. Test 20

b. Pulsegenerator 20

c. DFR 22

d. IFMMUX 26

e. Presorter 29

f. ECM32

2. Model Output 32

V. THE ALGORITHMS OF TEST SIMULATION MODEL 34

A. THE ALGORITHMS OF EMITTERS 34

B. THE ALGORITHMS OF EW SYSTEM 34

1. DFR 35

2. IFM 36

3. Presorter 37

VI. SIMULATION ANALYSIS 39

A. MODEL VERIFICATION 39

B. TERMINATION CONDITIONS 40

v

C. PROBLEMS ENCOUNTERED 41

VII. CONCLUSIONS AND RECOMMENDATIONS 42

A. OBSERVATIONS 42

1. AN/SLQ-32 EW System 42

2. Object-Oriented, Process-Based Simulation . 42

B. SUGGESTIONS FOR FURTHER RESEARCH 42

C. CONCLUSIONS 44

APPENDIX Test SIMULATION PROGRAM 45

LIST OF REFERENCES 86

INITIAL DISTRIBUTION LIST 87

vi

LIST OF FIGURES

Figure 1 Multibeam Receive Antenna 5

Figure 2 Receiver System Block Diagram 6

Figure 3 Band 2/3 Angle Encoding 10

vii

ACKNOWLEDGEMENT

I would like to thank my adviser, Professor Michael P.

Bailey, American friends whom I met in course OA 4333,

Advanced Simulation, and Lawrence Altshuler, the Raytheon

company's technical adviser, for their support and

recommendations that helped me to complete this thesis.

The reason I chose to build an Electronic Warfare (EW)

system simulation model for my thesis is that The Republic Of

China (R.O.C.) Navy just bought several sets of AN/SLQ-32

Fleet Defense EW Systems from the U.S. Navy. The EW system's

capability is always an unknown factor for ship defense

capability. I believe that doing research for my thesis is a

very good opportunity to study this EW system's performance.

Through this simulation model the commanding officers of the

R.O.C. Navy will be able to easily understand the capability

of this system. The model will be used as a reference when the

system sea trials commence.

viii

I. INTRODUCTION

The hostile environment at sea today presents a formidable

problem for the defense of a capital ship. Shipboard hostile

radars are capable of detecting and targeting a ship from

beyond the horizon, and those on airborne surveillance and

attack aircraft operate from well beyond 100 nautical miles.

Anti-ship missiles can be launched from ships, submarines, and

aircraft. They can be given midcourse guidance corrections by

another platform, and then home in on their targets using

active radar seekers.

Today's high value ships are the first targets for the

unseen enemy that seeks to strike a crippling blow to the

defenses of any nation. To prevent sneak attacks, the

electronic defense system must be able to detect the presence

of an enemy, and to identify the platforms and weapons he is

using, to prevent him from targeting capital ships at long

range, and to deceive the missiles he launches into missing

their intended targets. It must perform these tasks in the

midst of a virtual storm of various electromagnetic signals.

How important Electronic Warfare will be in the war today

has been completely understood. For self-protection, the

Republic Of China (R.O.C.), has purchased several sets of

AN/SLQ-32 Fleet Defense EW System from the US Navy. The

1

buyer, the Republic Of China Navy, was told the AN/SLQ-32

utilizes the most advanced technology to provide the system

with outstanding operational availability and an unsurpassed

capability to accomplish its mission in battle. But how

reliable the system's performance is, is always a question.

System simulation was chosen to carry out research into

this question in this thesis. Simulation involves the use of

computers to imitate the operations of the actual system.

Simulation can be used in evaluation of Electronic Warfare

systems after they are built. This type of simulation often

provides a more cost effecti-e method of determining their

optimum utilization and their effectiveness than actual tests.

This thesis documents the construction of a simulation of

AN/SLQ-32 Fleet Defense EW System in MODSIM II. MODSIM II is

a general-purpose, modular, block-structured high-level

programming language which provides direct support for object-

oriented programming and discrete event simulation. It can be

used to build large process-based simulation models through

modular and object-oriented development techniques. This

simulation model, called Test, seeks to simulate an AN/SLQ-32

EW system's capability in the environment having an arbitrary

number of different emitters. The trials presented in this

work use 15 distinct emitters.

The simulated AN/SLQ-32 system is required to intercept

the electromagnetic radiation and to locate and identify

2

sources. If the target has been recognized as a threat, the

proper countermeasure will be initiated.

This simulation is designed to provide a foundation that

not only can be used to study system reliability, but also can

be built upon as a part of a wargame or modified to study

varied topics such as training effectiveness of naval EW

system operators.

3

II. AN/SLQ-32 ElW SYSTEM DESCRIPTION

The AN/SLQ-32 system has two major subsystems, ESM and

ECM, performing the signal interception, emitter

identification and threat countermeasures.

In order to understand the simulation model, understanding

the architecture of EW system is required. Because

information concerning the ECM subsystem is classified, this

thesis only stresses the operational behaviors of the ESM

subsystem.

The ESH subsystem consists of the RECEIVER-ANTENNA GROUP

and DISPLAY-PROCESSOR GROUP. A detailed description of the

operational elements of both groups will be provided later in

this chapter.

The general function of the ESM subsystem is provided in

the following few paragraphs. This gives the reader a general

picture of the electronic warfare system.

The direction finding antenna in the RECEIVER-ANTENNA

GROUP consists of an array of elements fed through coaxial

cables by a multiple beam parallel-plate lens constructed in

stripline form using printed-circuit techniques. This lens-

fed array provides a set of individual contiguous high-gain

beams, all existing simultaneously, with each beam possessing

the full gain of the array aperture. [Ref.l:p.8] The

4

operation of direction finding in the receive mode is

illustrated in Figure 1.

Direction FindingAntenna Elements Collector R Aceivers
A , A

tSignalC '-'-OutSignaln 0'" • •• -/E
A F -

\Input Microwave •

Ports Lens

Figure I Xultibeam, Receive Antenna

.An incoming signal wave front from direction A is received

by the array and produces a set of signals at the outputs of

the array elements. These signals enter the multibeam lens

through cables and are brought to a focus at point A, where

receiver A is connected. The focusing property of the lens is

independent of frequency. This means that the beam-pointing

directions do not vary with frequency, thus accurate direction

finding can be achieved over wide frequency bands and wide

angular sectors simply by comparing the signal amplitudes

received at adjacent beamports. (Ref.l:p.8]

As shown in Figure 1, a pulse arriving from a given angle

is focused by the multibeam antenna array and sensed by one

or more of the beamports in the direction finding receiver

5

(DFR). The output of the beamport is compared with that of all

other beamports so that, if more than one signal is present,

the dominant (highest amplitude) signal can be identified for

processing. (Ref.l:p.9]

In parallel with the multibeam antenna and DFRs, the

system utilizes a semi-omni antenna to sense the pulse and

feed it to the instantaneous frequency measuring (IFM)

receiver, which determines the frequency of the received

energy by comparing the phase outputs of a series of

frequency-sensitive delay lines. [Ref.l:p.9]

The Receiver System Block Diagram is shown in Figure 2.

Figure 2 Receiver System Block Diagram

The presorter (DISPLAY-PROCESSOR GROUP) is a special-

purpose digital processor composed of a direction/frequency

correlator (DFC) and a digital tracking unit (DTU). Angle and

amplitude data from the DFR and coarse frequency data from the

IF14 are correlated in the DFC. Time-of-arrival data is added

6

to form a pulse descriptor word (PDW), which is then stored by

frequency and angle cell in the emitter file memory of the

DTU. If three or more pulses of this frequency and from this

angle are received within a programmable time interval up to

32 milliseconds, the DTU notifies the computer that a new

emitter is present. The computer then requests the DTU to

store subsequent pulses of that emitter over a time period

sufficient to provide enough pulses for further analysis.

(Ref.l:p.9)

The computer calculates from such data the pulse

repetition interval (PRI), scan period, and type of scan.

These parameters, along with frequency, are usually sufficient

to characterize an emitter. [Ref.l:p.9)

Identification is completed by comparing the observed

signal characteristics with the parameters of possible

emitters in a library stored in the computer memory. When

identification is complete, the computer sends the emitter

information to the display to alert the operator and

recommends appropriate action. [Ref.l:p.9]

A. RECEIVER-ANTENNA GROUP

Due to the frequency coverage of the AN/SLQ-32 EW system

being classified, the frequency coverage in this simulation

model is assumed to be in the 2 to 18 GHz range. There is no

frequency band division. In the following paragraph, the

original nomenclature is still used for convenience.

7

The receiver-antenna group, may be conveniently subdivided

into three major functions: the band 2/3 angle and amplitude

processing system, the band 2/3 frequency processing system,

and the band 1 receiver. (Ref.2:p.3]

The band 2/3 angle and amplitude processing system

comprises of band 2/3 direction finding receivers (DFR), and

a port and starboard angle encoder. (Ref.2:p.3]

The band 2/3 frequency processing system outboard (port

and starboard) components comprise of semi-omni antennas for

both bands 2 and 3, band 3 switchable preamplifiers (SWPAs),

and semi-omni preamplifiers (SOPAs). The inboard equipment

includes an instantaneous frequency measurement/multiplexer

(IFM/MUX) and an IFM/coarse frequency receiver(IFM/CFR).

[Ref.2:p.3]

1. Band 2/3 Angle and Amplitude Processing

a. Direction Finding Receiver (DFR)

Four DFRs, two for band 3 and two for band 2, are

mounted in each antenna array and boresighted 45 degrees and

135 degrees from the ship's heading, respectively. Since each

DFR provides approximately 90 degrees of azimuth coverage, a

total of eight DFRs (four port and four starboard) are

required for 360-degree coverage in both bands. [Ref.2:p.3]

In the program of this thesis only one DFR is

created covering 360 degrees instead of creating four DFRs to

simplify the programming work.

8

Emitter signals are received by a multi-beam

antenna that employs multiple separate beams to monitor a 90-

degree quadrant. When an emitter is received, the differing

amounts of RF energy in each beam provide amplitude

informat ion used by the angle encoder to determine emitter

angle of arrival (AQA) . To facilitate this process, the

energy from the antenna array elements are focused by beam

forming lens into separate beamports. [Ref.2:p.3]

b. Angle Encoder

One angle encoder mounted in each outboard ESM

enclosure is used to process the outputs of the four DFRs (two

band 3 and two band 2) on that side of the ship. (Ref.2:p.6]

The amplitude of each of the beamport signals from

each band 3 DFR is measured and compared with the other

beamports to determine which of the associated RF beamports

produced the maximum signal in that quadrant.

In normal-mode processing, the greater of the two

quadrant maximum signals is then selected for angle and

amplitude encoding (Ref.2:p.6) (as shown in Figure 3).

When maximum video signals arrive that are below

the receiver threshold level, no angle processing occurs.

(Ref .2:p. 6]

The band 3 sensitivity control function in the

angle encoder uses a sensitivity select signal from the

presorter to set the angle encoder input threshold level to

9

ANGLE OF ARRIVAL
VolMage From BIP 3/Voltag Fromn B/P 4

*EAMPORT 2 3 4 5 6

i I
(5.8 d8

ANIGLE ~~4 NOE

ANGLE CELL 3 6 Gl 7 8

4 - RELATIVE BEARING - 4

Figure 3 Band 2/3 Angle Encoding

either normal or high sensitivity. (Ref.2:p.7)

In this program only one Angle Encoder is created

to process signals that are received by The Direction Finding

Antenna with the sensitivity always set at the normal level.

2. Band 2/3 Frequency Processing

a. Semi -Omnni An tenn~a

A separate semi-omni antenna for band 2 and band 3

is mounted in each outboard ESM enclosure. These antennas,

each providing 180-degree azimuth coverage, are used for

detection of signals to be processed in the frequency channel.

(Ref_.2_p._7)

b. Instantaneous Frequency Measurembent/Multiplexzer

(IFM/HUX)

The inboard-mounted IFM/MUX receives band 2/3 RF

energy from both port and starboard outboard enclosures.

10

Local oscillators and mixers are then used to divide the band

2/3 frequency spectrum into seven intermediate frequency

subbands, each with a nominal 4 Ghz center frequency and a 2

Ghz bandwidth. Any signal within one of the seven subbands is

forwarded to the IFM/coarse frequency receiver (IFM/CFR).

[Ref.2:p.9)

In this thesis, the frequency spectrum is divided

into eight intermediate frequency subbands, each with a

nominal 5 GHz center frequency and a 2 GHz bandwidth.

c. Instantaneous Frequency Measurement/Coarse

Frequency Receiver (IFM/CFR)

The IFM/CFR, which is also mounted inboard,

receives a signal from the IFM/MUX on one of the eight

intermediate frequency subbands. The received signal is

amplified and then converted into a digital frequency word.

The frequzency word, along with its subband identification

strobe, is sent to the display-processor group for correlation

with the angle and amplitude data for the same emitter. Odd

and even numbered subband signals are processed in separate

paths. Each path has a separate instantaneous frequency

measurement discriminator and encoder. [Ref.2:p.9]

In this simulation program frequency channels were

not divided into even or odd numbered channel paths. Only one

processing path was created to simplify the programming work.

11

B. DISPLAY-PROCESSOR GROUP

The inboard-mounted display-processor group interfaces

with and provides control signals to both the receiver-antenna

group and the ECM group. All countermeasures set control and

display functions are performed within the display-processor

group. The display-processor group receives emitter

frequency, amplitude, AOA, and CW-emitter designation data

from the receiver-antenna group. After time of arrival(TOA)

data is appended, the received emitter data is formatted into

pulse descriptor words(PDWs). These PDWs are used for real-

time emitter activity sensing and AOA tracking in the Digital

Tracking Unit(DTU). PDWs are input to and processed by the

operational software, which analyzes the data and identifies

possible sources of the emission based on emitter descriptions

stored in system libraries. If the emitter is identified as

hostile and operating in the band 3 frequency range, ECM may

be initiated either via operator action or automatically by

the operational software. The mode is operator selectable.

The operational program selects an appropriate ECM group to

establish an engagement. Engagement data is visually

presented to the operator on the display and control

console(DCC). [Ref.2:p.13]

1. Digital Presorter

The digital presorter receives and preprocesses the

digitally encoded data from the receiver-antenna group. The

12

presorter is actually two separate functional entities housed

in a single ship replaceable unit(SRU). The two functions are

the direction frequency correlator and the digital tracking

unit. [Ref.2:p.15]

The direction frequency correlator (DFC) receives

digitally encoded band 2/3 emitter AOA, amplitude, and

frequency data from the receiver-antenna group. Emitter AOA

and amplitude data are encoded in the angle encoders

independently of frequency data prior to arriving at the DFC.

DFC timing assures that AOA and frequency data from any single

emitter arrive simultaneously at the time coincidence

correlator. The DFC correlates the emitter data, adds a TOA

tag, formats a PDW identifying the emitter, and sends it to

the digital tracking unit(DTU). [Ref.2:p.15)

The purpose of the DTU is to increase system emitter

processing capacity by sorting and verifying PDWs at speeds

much faster than could be accomplished by the digital

processing unit(DPU). Emitter PDWs from the DFC are sorted by

AOA and frequency and then stored in an emitter file memory

(EFM). A new emitter is verified (considered firm) when three

pulses have been identified in the same AOA frequency cell.

New firm emitters are reported to the DPU, and they are fully

reported only once. Subsequent reports contain AOA or emitter

activity changes. The DPU uses the TOA data for pulse

repetition interval (PRI) and scan calculations. The

13

amplitude data is used for scan analysis, PRI deinterleaving

and data quality. (Ref.2:p.15]

2. Digital Processor Unit

The DPU is an upgraded general purpose computer. The

computer includes an embedded disk used for high speed program

loading, threat library storage and event recording. The

memory stores the operations program, constants, and other

data required for operation of the countermeasures set.

14

III. MODSIX II THE MODULAR, OBJECT-ORIENTED LANGUAGE

MODSIM II is the language in which model Test is written.

The basic concepts will be covered in this chapter. This

description touches on the several ways in which MODSIM II

differs from traditional simulation languages.

A. MODULAR

MODSIM II programs may be divided into "modules". Each

module is stored in a separate file. The advantages of this

approach are that these modules may be compiled separately,

saving time when only one of them is edited, and that a single

module may serve multiple programs. This is because modules

can import constructs and definitions from each other. The

modular concept formalizes the notion of libraries of reusable

code. (Ref.3:p.1]

B. OBJECT-ORIENTED

An "object" is an encapsulation of a data record which

describes the state of the object and procedures called

methods which describe its behaviors. Objects are more

concrete than most programming constructs. They interact

through a clearly defined protocol and the fields of an object

instance are private. A new object type can inherit the

attributes of an existing object type and elaborate on the

15

fields and methods of its ancestor type. Finally, objects are

capable of polymorphism. A group of objects which share

common ancestry can also share a method, yet each implements

it differently. (Ref.3:p.1]

C. STRONGLY TYPED

Every expression, assignment statement and parameter is

type checked at compile time for consistency. This eliminates

errors which can go undiscovered until runtime in untyped

languages. The concept of types also allows users to define

their own types then declare variables of those types.

[Ref.3:p.2]

D. BLOCK-STRUCTURED

A block is made up of declarations and executable

statements. It may contain smaller blocks. The important

feature of block-structured languages is that the scope or

visibility of variables is restricted to the block in which

they are declared and any subsidiary blocks. This control of

scope of variables is fundamental to contemporary software

engineering practices. [Ref.3:p.2]

Z. SIMULATION

Simulation capabilities are provided in library modules.

These modules provide direct support for all capabilities

needed to program discrete-event simulation models. All

MODSIM II objects have the capability of using Process

16

methods. A "Process" method is a method which can elapse

simulation time. [Ref.3:p.2] A process might WAIT in

simulation time and interact at specific simulation times with

other processes. Also we can say that a WAIT statement

elapses simulation time in a TELL method. The wait can be for

a certain length of time (WAIT DURATION) or for an object to

complete an action (WAIT FOR object TO {TELL method}). The

key point is that only TELL methods can contain WAIT

statements. In addition each WAIT construct has an optional

ON INTERRUPT clause which is executed when the particular

process of an object instance is interrupted. This allows a

process that is dormant in a wait condition to be awakened

before the completion of the WAIT condition.

17

IV. THE TEST SIMULATION MODEL

The Test model is a basic simulation of AN/SLQ-32 EW

system made to answer specific questions about system

performance, as measured by the ESM's probability of intercept

in the midst of various electromagnetic signals, emitter

identification capability and accurate ECM set-on. It is

written in MODSIM I1 and designed to provide a foundation

which can be used as a reference for system performance checks

in sea trials and as an instructor's training tool for

training R.O.C. Navy key personnel. This model will be

upgraded in the near future to make it part of the R.O.C.

Navy's wargame program.

A. OVERVIEW

The simulation program consists of 41 MODSIM II modules

consisting of one main module and 20 paired definition and

implementation modules. The main module is the name of the

executable file and is called Test. The file naming

convention used by MODSIM is that all MODSIM files will end in

.MOD and be prefixed by a "M" if it is the main module, a "D"

if it Is a definition module, and an "I" if it is an

implementation module. A main module contains the main

program and is the name of the executable file created. A

18

definition module contains type and variable definitions that

can be exported to other modules. An implementation module

contains the actual code to implement the definition module.

Each module is described in detail later on in this chapter.

B. SIMULATION EXECUTION

Execution of the simulation is straightforward. The user

types "Test" to set up the simulation experiment, then the

user will be asked " HOW MANY PULSETRAINS ?". In the present

example the program was made by 15 emitters, so the user must

input a number less than or equal to 15. The user will be

asked again to input the PRI of each emitter. After this, the

program will start to run. The results are presented in a

file called DEBUG.OUT.

C. SIMULATION DESIGN

The design of the simulation is based on objects that

correspond to their real world counterparts. There is a

pulsegenerator which consists of an array of PulseTrain

objects that correspond to unidentified signal emitters at

sea. There are three objects in the ESM subsystem. The first

one is called DFR which corresponds to the direction finding

assembly of the ESM subsystem, the second one is called IFMMUX

which corresponds to the ESM's frequency measurement assembly

and the last one is called Presorter which corresponds to the

signal processor assembly of the ESM subsystem. Each of these

19

objects is implemented as a separate module, consisting of a

definition module and implementation module pair. These

modules will be described in the following paragraphs.

1. Modules

a. Test

The Test main program module is contained in the

file MTest.mod. It is a very simple main program. In this

module a new DPR object, a new IFMXUX object, a new DFC object

and a whole new array of PulseTrain objects are created. The

basic flow of the simulation is that the user is asked to

input both the number of PulseTrain operated in pulsegenerator

and the PRI for each PulseTrain. Then enter a loop consisting

of telling each PulseTrain object to Radiate, followed by

BtartSimulation. The simulation will execute until the

simulation time reaches to StopTime.

b. Pulsegenerator

The pulsegenerator modules consists of the files

Dpulsegenerator.mod and Ipulsegenerator.mod. There are two

objects, Pulseobj and PulseTrainObj, which are defined and

implemented in these modules. The PulseObj is created to

represent the single signal pulse. It has its own fields,

which are angle, frequency, power and pulsewidth. Since the

value of the fields of an object are modified only by its own

methods, the ASK method GetFiled is created to perform this

action.

20

The PulseTrainobj is set up for playing the part of

a train of pulses that comes from the same emitter. The

PulseTrain object first sets up the simulation when it is told

to Radiate from the MAIN module. It does this by entering a

loop in TELL METHOD Radiate. The pulseTrain generates a train

of pulses after it is told to radiate. The pulses are

produced one by one with the fixed time interval. Just like

in the real world, the pulse generated by an emitter is

separated by a certain amount of time between this pulse and

the next one. This time interval is called pulse repetition

interval (PRI). Once the pulse is produced, it is asked to go

back to PulseObj to GetFiled, then the pulseTrain will

SendPulse.

The way to represent that the pulse has been sent

by the pulsegenerator is to ask DFRObj and IFMMUXObj, the

direction finding subsystem and frequency measurement

subsystem in AN/SLQ-32 system, to ReceivePulse.

There are an array of PulseTrains which have been

created in main module, each one does the same job except

having different parameters.

DFRinit and IFMMUXinit are two ASK methods,

employed to be the bridges between the pulsegenerator and

DFRObj and between pulsegenerator and IFMMUXObj. By these two

bridges the messages from pulsegenerator can be received by

DFRObJ and IFMMUXObj.

21

C. DFR

The direction finding receiver(DFR) is one of the

major subsystems of the AN/SLQ-32 system used to find the

target direction. The DFR modules consist of the files

DDFR.KOD and IDFR.KOD. There are five objects and related

types defined and implemented in these modules. The five

objects are BufferRecList, BufferBeamObj, BeamPortObj,

BeamPortQueueObj and DFRObj, where only two of them own the

method or methods to implement the actions. Their functions

will be discussed in the following paragraphs.

The BeamPortObJ is created to play the part of one

beamport in the Multibeam Receiver Antenna. Each beamport has

its own fields, orientation and gain, employed to define its

unique characteristics and an ASK method SetField used to

modify its fields.

Ths' DPRObj is the heart of this subsystem and is

used to find out the angle of signal received by the antenna.

The azimuth coverage of the direction finding antenna is 360

degrees around the capital ship. The amount of energy

received by the specific cells on the antenna is focused by a

beam forming lens into separate beamports.

Every beamport provides 5.6 degrees of azimuth

coverage with a different orientation. The orientation of the

beamport is the center point of this beamport, for example the

first beamport covers from 0 to 5.6 degrees and its

orientation is at the 2.8 degree point.

22

The BeamPortQueue created in ASK method ObjInit is

a collection of a series of BeamPort. Once a new BeamPort is

created it is asked to go back to BeamPortObj to SetField.

Then the well defined BeamPort is put in the BeamPortQueue.

The DFRObj is immediately asked to ReceivePulse

after the PulseTrain object sends the pulse. When the pulse

is received, the differing amounts of RF energy in each

beamport are recorded in BeamRec by procedure BuildBeamPortRec

contained in BuildBeamPortRec module.

The BuildBeamPortRec module is contained in the

files DBuildBeamPortRec.MOD and IBuildBeamPortRec.MOD. It

consists of only one procedure, called BuildBeamPortRec. This

procedure is designed to create a BeamRec for each beamport

with the signal amplitude received at this beamport. The

orientation and amplitude are two elements of the beamrec's

field. The orientation is the same as the orientation of

BeamPort and the amplitude is derived by procedure

BeamPortGain.

The amplitude measured in each beamport (PB.,p) is

derived by Equations 4.1, 4.2 and 4.3.

23

o= IANG-ORIENTATIONI (4. 1)

G(6) =(1-e/5.6) if e<5.6 (4.2)
G(O) =6 otherwise

Pseam•= Pp~lje *G (e) (4.•3)

where

0 is the angle between the direction of arrival of the

received pulse and the orientation of the beam port.

G(0) is the gain of the beam port for the angle 0, the gain

pattern can be easily replaced by altering

BeamPortGain. If the 0 is less than 5.6 degrees , the

gain pattern is equal to G(0)=(1-0/5.6), otherwise the

gain of the beam port is zero.

PPW is the amplitude of the received pulses.

The BeamRecs provide amplitude information used by

the Angle Encoder to determine emitter angle of arrival (AOA).

If the amplitude of BeamRec is higher than the

threshold, this BeamRec is sent to the BufferBeam of Angle

Encoder. The angle determination is done by TELL method

DetermineAOA.

24

The first step of angle determination is finding

pulse groups, this is done by procedure FindPulseGroup

contained in FindPulseGroup module. In this procedure those

BeamRecs having very close orientation and magnitudes higher

than the threshold are picked from BufferBeam and put in

PulseGroup.

In the Angle Encoder the emitter's angle of arrival

provides two different voltages from two adjacent beamports.

The angle encoder first selects the largest signal (V.) then

an offset voltage is generated (V,.-464 my) which is compared

to all beamport outputs. If the voltage difference between

adjacent beamports is less than or equal to 464 mv (5.8dB),

then a "cross-over" cell will be encoded. If the difference

is greater than 464 my, a "main-beam" cell will be encoded.

The above procedure is done by the procedure ProcessPulseGroup

contained in ProcessPulseGroup module.

The output of procedure ProcessPulseGroup is

employed to create the AngleRec by the procedure BuildAngleRec

which is contained in BuildAngleRec module. This ?ngleRec

consists of the received pulse's AOA, amplitude, and time,

which is sent to display-processor group (PresorterObj) by ASK

method DeliverRecord for correlation with received pulse

frequency data.

25

d. IFMMUX

The IFM receiver is the simplest, most mature

technique for obtaining pulse-by-pulse frequency information

over a broad frequency band. The IFMMUX module consists of

the files DIFMMUX.MOD and IIFMMUX.MOD. There are three

objects and related types defined and implemented in these

modules. The three objects are ChannelObj, ChannelQueueObj

and IFMMUXObJ.

The IFM/MUX assembly reduces the whole signal

frequency spectrum into eight discrete 2 GHz subbands

(Channels). The received signal in each subband (Channel) is

translated into the 4 to 6 Ghz Intermediate Frequency range by

a mixer and a local oscillator. Since the subband (Channel)

inputs are in the 4 to 6 Ghz range, the encoding frequency

range is virtually identical within each subband. Thus, for

actual frequency identification, each output frequency word is

accompanied by a subband identification strobe.

The ChannelObj is created to represent the eight

subbands in the frequency spectrum. The FreqStart and LOFreq

are the two elements of its fields, and are used for subband

identification and the frequency generated by local oscillator

in this subband. The ASK method SetField is used to modify

the object's fields, the LOFreq is derived by the procedure

DerivedLOFreq, which is contained in DerivedLOFreq module.

The ChannelQueueObj is a collection of a series of

Channelobj, and it represents the whole frequency spectrum.

26

The new Channel is created in the ASK method

ObjInit of the IFMMUXObj, and asked to go back to ChannelObj

to SetField. The well defined Channel is put in ChannelQueue.

The IFMNUX i• -sked to ReceivePulse right after the

PulseTrainObj has sent the pulse. The first step is to

determine the channel with the strongest received signal then

down-converter the Radio Frequency to 4 to 6 Ghz Intermediate

Frequency by the procedure RFDownConverted , which is contained

in RFDovnConverted module. The output of this procedure is

ChannelRec, which is used by the TELL method MeasureFreq to

determine the frequency of the received pulse.

The digital instantaneous frequency measuring

receiver uses a bank of frequency discriminators with the

longest delay corresponding to the desired frequency

resolution, while the shortest delay is determined by the

highest frequency to be measured. (Ref.4:p.66]

The IFM COARSE FREQUENCY RECEIVER (IFM CFR) divides

the instantaneous frequency signal received from the IFM/MUX

into two paths, one having a delay line of known length and

the other having zero delay. The signal passing down the

delay line will experience a phase shift, with respect to the

undelayed signal, which is a function of the input frequency.

The two signals are applied to a phase correlator and envelope

detector which form two video signals; one (V) proportional

to the cosine of the phase shift and the other (V,)

27

proportional to the sine of the phase shift. The phase angle

for a monochromatic signal is given by 0 =W.Td, where w, is the

signal's radian frequency and Td is the fixed delay time. The

phase angle can be found by taking the tan1 (V1 /V,) of the ratio

of the two quadrature video voltages. The intercepted

signal's frequency can be found from the phase angle and the

known delay as f, = 0/2*if*Td. [Ref.4:p.65]

The discriminator of this simulated system is

operated with a delay time (T), 0.000045 As, which was chosen

to ensure the quadrature video voltages are unambiguous. The

unit of frequency used in this model is MHz.

Equations 4.4, 4.5 and 4.6 are used to determine

the quadrature voltages, E and F, of the IFM coarse frequency

receiver.

0=2*n*IF,• (4.4)

E=A*sin (6) (4.5)

F=A*cos (0) (4.6)

uhere

0 is the phase angle for the signal.

T is the time delay of frequency discriminator.

IF is the instantaneous frequency.

A is the amplitude of the received pulse.

28

The phase angle can be found by measuring these two

voltages, E and F, and taking the tan-1 (E/F). The frequency

of the IF signal can be derived from the phase angle and the

known delay as IF = 0/2*v*r. Finally the RF can be encoded by

adding the derived IF and frequency produced by the local

oscillator. All of this care is taken in producing IF

measurements which could contain random voltage measurement

errors. This measurement error introduction has not yet been

implemented in Test model.

The radio frequency and time of pulse received are

used to create FreqRec by the procedure BuildFreqRec, which is

contained in BuildFreqRec module. The FreqRec is sent to the

display-processor group where they are correlated with related

AOA and amplitude data.

e. Presorter

The Digital Presorter interfaces with and provides

control signals to both the receiver-antenna group (DFRObj and

IFMMUXObj) and the ECM group. The Presorter module consists

of the files DPresorter.MOD and IPresorter.MOD. There are

five objects and related types defined and implemented in

these modules. The five objects are BufferRecList,

PulseRecBufferObj, DFCObJ, DTUObJ, and DPUObJ.

The DFCObJ (Direction Frequency Correlator)

receives emitter frequency, amplitude and AOA data from the

29

receiver-antenna group by the ASK methods ReceiveARecord and

Receivee¢ecord.

The received frequency data (FreqRec), amplitude

and AOA data (AngleRec) are formatted into PulseRecs by the

procedures BuildPulseFreqRec and BuildPulseAngRec. These

PulseRecs are put into PulseRecBuffer and sent to the

correlator.

DEC timing assures that AOA and frequency data from

any single emitter arrive simultaneously at the time

coincidence correlator.

The correlated emitter data are formatted into

pulse descriptor data words (PDWs), put into PDWBuffer and

sent to Digital Tracking Unit (DTUObj).

The DTU sorts POWs from the DEC into the Emitter

File Memory(EFM) based on relative AOA and frequency, and is

performed by the ASK method BufferSort.

The emitter is not reported to the Digital

Processing Unit (DPUObj) until three pulses have been

identified in the same EPM cell within a time interval. The

ASK method DeclareContact is used to notify DPU that a new

emitter is present.

Once a new emitter is reported, then the DPU

requests the DTU to store subsequent pulses of that emitter

over a time period sufficient to provide enough pulses for

further analysis.

30

After a time interval (ProcessInterval), the

records of stored pulses are sent to the computer by the TELL

method Process to calculate the emitter's parameters.

The parameter calculation is performed by the ASK

method FindParameter. Before the execution of the

calculation, the match of stored pulse records with the record

of new emitter must be done. Then the pulse repetition

interval (PRI) and type of scan are calculated. These

parameters, along with frequency, are usually sufficient to

characterize an emitter.

The emitter identification is completed by

comparing the observed signal characteristics with the

parameters in a library stored in the computer memory

(EmitterLib.dat).

The procedure FindSHRec contained in the FindSH

module is used to search through the library (EmitterLib.dat)

for the emitter having the same characteristics with the

observed signal.

The process of the formation of EmitterLib.dat is

done by the procedures ReadEmAll, ReadEmitterLib (contained in

Input module), ReadLst (contained in ReadLst module) and the

procedure ReadSH (contained in ReadSH module).

The procedures ReadEmAll and ReadEmitterLib are

employed to locate the EmitterLib.dat in computer memory.

31

The procedure ReadLst is used to determine

emitters' data are stored in this file. Reading each

emitter's data is performed by procedure ReadSH.

The module RGlobals is contained in the file

DRGlobals.MOD. This module defines #he global types and the

variable used in the formation of EmitterLib.dat and emitter

identification.

The emitter data file, EmitterLib.dat, is a kind of

ARRAY data type. The first line of the file is an integer

showing the number of the emitter's data stored, and the

following lines show each emitter's name, parameters,

nationality and the techniques which will be used as a

countermeasure.

If the observed signal is identified as "HOSTILE"

and its frequency is in 8 GHz to 12 GHz, The DPU will initiate

the electronic countermeasure by the ASK method InitiateECM.

f. ECM

The information of ECM subsystem of AN/SLQ-32

system is classified, so this module will not be built.

Instead, a dummy object ECMObj was created to receive the

command from DPUObJ.

2. Model Output

The output of the simulation is put in the debug.out

file not only to show the results, but also display the

process of the simulation. If the user has a problem

32

understanding the program, reading through this file will be

helpful.

33

V. THE ALGORITHMS OF TEST SIMULATION MODEL

The algorithms of this simulation program are divided into

two major parts: the algorithms of EMITTERS and the

algorithms of AN/SLQ-32 EW system.

A. THE ALGORITHMS OF EMITTERS

In order to let the AN/SLQ-32 EW system receive signals,

creation of several friendly or hostile EMITTERS is necessary.

In this program an array of PulseTrains are produced to

represent EMITTERS on the'sea or in the air.

Each EMITTER has its own parameters showing its

distinctive characteristics. Once the EMITTER is asked to

radiate, the AN/SLQ-32 EW system will receive the pulses, then

the following procedures can be executed.

B. THE ALGORITHMS OF EW SYSTEM

The AN/SLQ-32 EW system has two kinds of antennas to sense

the pulses: Direction Finding antenna and Semi-Omni antenna.

The information of arriving angle and amplitude of pulse

are sent to the Direction Finding Receiver(DFR) which is

connected to the DF antenna.

The pulse frequency information is sent to the

Instantaneous Frequency Measuring Receiver(IFM) which is

joined to the semi-omni antenna.

34

The angle and amplitude data from the DFR and the coarse

frequency data from the IFM are sent to the Presorter for

correlation.

The algorithm of each assembly will be described in the

following paragraphs.

1. DFR

The amplitude and angle data from the multibeam

Direction Finding antenna are sensed by the Direction Finding

Receiver (DFR). Only data from the two beamports which have

the highest and the second highest amplitude are formatted

into beam records (BeamRec) and collected by bufferbeam.

If there are more than one pulse from different

emitters which arrive at the same time, the DFR only receives

one of them which appears first in simulation and blocks the

rest.

The records in the bufferbeam are sent to the angle

encoder to determine the pulse angle of arrival.

In the angle encoder the records in the bufferbeam are

checked to ensure they arrive at the same time. After the

time checking, the records are put into the pulsegroup and are

ready to be processed.

The angle record is created after the pulsegroup is

processed. The data in the angle record are the calculated

pulse angle, amplitude and time tag.

35

2. I4

The 2 to 18 GHz frequency band is divided into eight

2 GHz band width subbands(channels). Each channel is down

converted to a 4 to 6 GHz Intermediate Frequency (IF) by a

mixer and a local oscillator.

Only one of the eight channels can sense the signal

received by the semi-omni antenna. The channel which has

signals is processed and a channel record is created.

The data in a channel record are the channel strobe,

which is used to identify the frequency range of this channel,

and the IF, which is employed to measure the pulse frequency.

The delay time(T) of the discriminator is 0.000045 us,

which was chosen to ensure the quadrature voltages are

unambiguous. The unit of frequency in this program is MHz.

Equations 4.4, 4.5 and 4.6 in chapter 4 are used to

figure the two measured quadrature video voltages of the IFM

coarse frequency receiver. One voltage (E) is proportional to

the sine of the phase shift (0=2*if*T) and the other (F) is

proportional to the cosine of the phase shift.

The phase angle can be found by taking the tan'(E/F)

of the ratio of the two quadrature video voltages. The

frequency of the IF signal can be found from the phase angle

and the known delay as IF = 0/2*v*r.

36

The Radio Frequency (RF) can be encoded by adding the

derived IF and frequency produced by the local oscillator.

The frequency record is created after the RF is derived.

The data in a frequency record are the calculated

pulse frequency and time tag.

3. Presorter

The frequency record from the IFM is correlated with

the related angle record from the DFR in Direction Frequency

Correlator (DFC). The matched records are formatted into a

pulse descriptor data word(PDW). The PDWs are collected at a

PDWbuffer which is sent to Digital Tracking Unit (DTU) for

emitter sorting.

The DTU sorts the PDWbuffer at a preprogrammed time

interval. The PDWs with the same frequency and angle data are

stored in the emitter file memory (EFM).

The reporting of "a new emitter is present" to the

Digital Processing Unit(DPU) is executed when 3 or more pulses

from the same emitter are found in the same EFM.

The DPU asks the DTU to store the subsequent pulses of

that emitter over a time period sufficient to provide enough

pulses for parameter calculation. During this time period

there may be more than one emitter reported. A reference

pulse record is put into a reference pulse buffer whenever an

emitter is reported.

37

Reference pulses are kept for each active emitter

which the system has already observed. Matching the pulses

received after the emitter is reported with the reference

pulse records, which are stored in the reference pulse buffer,

is done before starting parameter calculation.

The difference between time tags of pulse records from

the same emitter is used to calculate the pulse repetition

interval (PRI). The amplitude of the pulses are employed to

find out the emitter's type of scan. In this program only one

type of scan, fixed direction antenna, is created. These

parameters, along with frequency, are usually sufficient to

characterize an emitter.

Emitter identification is completed by comparing the

observed' signal characteristics with the parameters of

possible emitters in the emitter data file (EmitterLis.dat).

The electronic countermeasures are initiated when the

hostile emitter is identified and its frequency falls in the

8 to 12 GHz region.

38

VT. SIMULATION ANALYSIS

This simulation is a terminating simulation. The mission

will end when the preprogrammed Stoptime is reached.

One of the major purposes for establishing this simulation

model is to generate an AN/SLQ-32 EW system performance

analysis program. The structure of this program is founded on

the system's operational behavior and capability gathered from

the system manufacturer, Raytheon Company.

In this simulation program, random error was not employed

in a system's measurement or the probability of detection.

The buyer was told the AN/SLQ-32 EW system has extremely high

probability of detection, accurate emitter identification and

accurate ECM set-on. So in this simulation model, the

simulated system is performing with almost perfect results.

The only performance trait that can be measured is congestion

effect in various record buffers in the system.

A. MODEL VERIFICATION

The model has been verified to work correctly in the

environment having up to 35 different emitters. The program

runs correctly and the output has been examined and is

believed to be correct. The model has not been validated as

39

this would require comparing its output with the results

obtained from actual system sea trials.

In the future, when the results of the system sea trials

are obtained, they will be compared with the output of this

program which is produced in a simulated electromagnetic

environment that is similar to the one in real sea trial.

Since it has not been validated, it has also not been

calibrated and some results of the parameter calculation

should not be considered as being absolutely precise. It is

the intention to validate the model using data obtained from

actual system sea trials in the future.

B. TERMINATION CONDITIONS

The simulation is terminated when the simulation time

(SimTime) reaches or just passes over the stop time. The

emitters transmit pulses by turns in different time intervals

(PRIs). Each turn before the pulse is sent, the current

simulation time is checked and compared with the preprogrammed

stop time. If the current simulation time is less than the

stop time, the pulse is sent immediately. Otherwise, this

emitter is shut down.

The simulation termination is completed only when all

emitters are shut down. Due to emitters having different

pulse transmitting intervals, they are stopped at different

times.

40

C. PROBLEMS ENCOUNTERED

The multiple concurrent processes that can occur in the

simulation language MODSIM II are both a useful feature and a

source of problems.

The processes are a useful feature in that they allow one

object to be performing many different activities in the form

of concurrent methods at the same time. This greatly

simplifies the code that is needed in situations where this

concurrence is applicable.

Problems arise when pulses collide, because the EW system

is designed to process one pulse at a time. It is possible

for pulses to collide in the real system, in which case the

real system measures only the strongest pulse. However,

MODSIM's timing routine cannot judge pulse strength to order

the pulses' arrival by signal strength, since pulses are

received and processed instantaneously. So the code could not

be written to pass only the signal with the highest amplitude.

The only way to keep the simulated system processing one pulse

at a time is by receiving the first pulse appearing in

simulation and blocking the remaining pulses. This is a small

draw-back in this simulation model.

41

VII. CONCLUSIONS AND RECOMMENDATIONS

A. OBSERVATIONS

1. AN/SLQ-32 EW System

The performance of AN/SLQ-32 ESM subsystem can be

analyzed by this simulation program. This is an advantage in

operator training and system introduction. People can see

what is going on in the system's signal processing and

subsequent response on the program's output and without having

to use the real system. That makes training more cost

effective.

2. Object-Oriented, Process-Based Simulation

Object-oriented programming delivers on its promisee

in a simulation environment. The simulation code was easy to

write, debug, maintain, and enhance in nearly all situations

encountered. The process-based simulation concept simplified

the design and maintenance of this large model.

B. SUGGESTIONS FOR FURTHER RESEARCH

1. The next logical step in the research of this model is

to set up the simulated ECM subsystem, expand the emitters

data file and modify the current program if it is necessary.

That will make this simulation model more realistic.

2. It would be useful to validate the model against real

world data by setting up a real test with actual AN/SLQ-32 EW

42

system and targets. The actual probabilities of correctly

identifying signals can be measured and compared with the

values determined in Test model. This would allow the model

to be calibrated so that it would accurately simulate

measurement of the target parameters.

3. The difference between sea trial results and the

simulation output can be used as a reference for system

performance checks. Since the simulation is operating in a

perfect condition, this difference can also be employed to

study the reasons for failures in intercepting signals and

jamming hostile targets.

4. Wargaming and electronic warfare are two very new

concepts in The Republic Of.China Navy. It's hard to educate

the fleet sailor who operates the AN/SLQ-32 EW SYSTEM with

respect to EW when they can not see the effect of electronic

warfare during an at-sea exercise. The techniques of

electronic countermeasures are normally classified and the ECM

system is rarely operated in an active mode during exercises

for reasons of security. That makes the situation even worse.

Currently there is no wargame model that can be used to show

various engagement results focusing on the effects of

electronic warfare techniques. This research is going to be

extremely helpful in solving these problems. Building a

wargame model which includes electronic warfare for the

Republic Of China Navy is a goal to be reached in the future.

43

C. CONCLUSIONS

The AN/SLQ-32 ESM subsystem was successfully modeled by

Test but there remains much work to be done to make the model

more realistic and user friendly.

This simulation model as well as MODSIM II programming

language will be introduced to the Republic Of China Navy in

the near future.

44

APPENDIX Test SIMULATION PROGRAM

MAIN MODULE Test;
I{--}

DESCRIPTION:
This is the main module of an AN/SLQ-32 EW SYSTEM simulation
model.

{ ---}
FROM pulsegenerator IMPORT EmitterArrayType;
FROM DFR IMPORT DFRObj;
FROM IFMMUX IMPORT IFMMUXObj;
FROM Presorter IMPORT DFCObj;
FROM DebugRun IMPORT SetUpD;
FROM SimMod IMPORT SimTime;
FROM SimMod IMPORT StartSimulation;

VAR
EmitterArray:EmitterArrayType;
DFR :DFRObj;
IFMMUX :IFMMUXObj;
DFC :DFCObj;
N,i :INTEGER;
PRI :REAL;

BEGIN
SetUpD(TRUE);
OUTPUT("How many PulseTrains ?");
INPUT (N) ;
NEW(EmitterArray, 1..N);
NEW(DFR);
NEW(IFMMUX);
NEW(DFC);
FOR i:=1 TO N

OUTPUT("PRI FOR #",i);
INPUT(PRI);
NEW (EmitterArray (i));
ASK EmitterArrayfi] DFRinit(DFR);
ASK EmitterArray(i] IFMMUXinit(IFMMUX);
ASK DFR DFCinit(DFC);
ASK IFMMUX DFCinit(DFC);
TELL EmitterArray[i] TO Radiate(i,PRI);

END FOR;
StartSimulation;

END MODULE.

45

DEFINITION MODULE pulsegenerator;
{ --- }

DESCRIPTION:
This is a definition module of the Test simulation that
defines the EMITTER (pulsegenerator) Object.

{ ---
FROM DFR IMPORT DFRObj;
FROM IFMMUX IMPORT IFMMUXObj;

EXPORTTYPE
PulseObj = OBJECT; FORWARD;
PulseTrainObj = OBJECT; FORWARD;

TYPE

PulseObj = OBJECT;

Angle :REAL;
Freq :REAL;
Power :REAL;
PulseWidth :REAL;
ASK METHOD GetField(IN i:INTEGER);

END OBJECT; {Pulse}
PulseTrainObj = OBJECT;

pulse : PulseObj;
StopTime : REAL;
Angle : REAL;
ScanRate : REAL;
Power REAL;
DFR : DFRObj;
IFMMUX : IFMMUXObj;
ASK METHOD ObjInit;
TELL METHOD Radiate(IN i:INTEGER;

IN PRI : REAL);
ASK METHOD DFRinit(IN DFRNEW:DFRObj);
ASK METHOD IFMMUXinit(IN

IFMMUXNEW: IFMMUXObj);
ASK METHOD SendPulse(IN pulse : Pulseobj);

END OBJECT; {PulseTrain}

EmitterArrayType=ARRAY INTEGER OF PulseTrainObj;

END MODULE.

46

IMPLEMENTATION MODULE pulsegenerator;
--- }

DECRIPTION:
This is an implementation module of the Test simulation that
implements the EMITTER (pulsegenerator) Object.

{ ---
FROM SimMod IMPORT Interrupt;
FROM DFR IMPORT DFRObj;
FROM IFMMUX IMPORT IFMMUXObj;
FROM Debug IMPORT TraceStream;
FROM SimMod IMPORT SimTime;

OBJECT PulseObj;
{ --- }
ASK METHOD GetField(IN i:INTEGER);
S--
BEGIN

1F (i=1)
Power:=20.0;
Angle:=20.0;
Freq :=9566.2;

ELSIF (i=2)
Power:=30.0;
Angle:=135.0;
Freq:=11000.0;

ELSIF (i=3)
Power:=25.0;
Angle:=55.0;
Freq:=8500.0;

ELSIF (i=4)
Power:=25.0;
Angle:=5.0;
Freq:=8900.0;

ELSIF (i=5)
Power:=25.0;
Angle:=95.0;
Freq:=15900.0;

ELSIF (i=6)
Power:=25.0;
Angle:=82.0;
Freq:=10900.0;

ELSIF (i=7)

47

power: =25.0;
Angle:=195.0;
Freq:=7900.0;

ELSIF (i=8)
Power:=25. 0;
Angle:=215.0;
Freq:=9900. 0;

ELSIF (i=9)
Power:=25. 0;
Arigle:=3 15.0;
Freq:=9500. 0;

ELSIF (i=10)
Power:=25. 0;
Angle:=355.0;
Freq:=9700. 0;

ELSIF (i=ll)
Power:=25. 0;
Angle:=335.0;
Freq:=9800.0;

ELSIF (i=12)
Power :=25 .0;
Angle:=235. 0;
Freq:=6900. 0;

ELSIF (i=13)
Power:=25 .0;
Angle:=31. 0;
Freq:=9400. 0;

ELSIF (i= 14)
Power:=25. 0;
Angle:=144 .0;
Freq:=4900. 0;

ELSE
Power :=25 .0;
Angle: =191. 0;
Freq:=4900. 0;

END IF;

END METHOD;

END OBJECT; {PulseObj}

OBJECT PulseTrainobj;

48

- --- }
ASK METHOD ObjInit;
S---}

BEGIN
StopTime:=105.0;

END METHOD;

S---}
TELL METHOD Radiate(IN i:INTEGER;

IN PRI : REAL);
-- }

BEGIN
LOOP

WAIT DURATION PRI
ON INTERRUPT

TERMINATE
END WAIT;

IF (SimTime()>StopTime)
TERMINATE;

END IF;
ASK TraceStream TO WriteString ("New Pulse" +

"AT" + REALTOSTR(SimTimeo));
ASK TraceStream TO WriteLn;
NEW(pulse);
ASK pulse GetField(i);
ASK SELF SendPulse(pulse);

END LOOP;
END METHOD;

--- }
ASK METHOD DFRinit(IN DFRNEW:DFRObj);
{ --- }

BEGIN
DFR:=DFRNEW;

END METHOD;
{ --- }
ASK METHOD IFMMUXinit(IN IFMMUXNEW:IFMMUXObj);
{ --- }

BEGIN
IFMMUX:=IFMMUXNEW;

END METHOD;
--- }

ASK METHOD SendPulse (IN pulse : PulseObj);
--- }

BEGIN
ASK DFR TO ReceivePulse(pulse);
ASK IFMMUX TO ReceivePulse(pulse);

END METHOD;
END OBJECT; {PulseTrainObj}
END MODULE.

49

DEFINITION MODULE DFR;
{ -- }

DESCRIPTION:
This is a definition module of the Test simulation that
defines the Direction Finding Receiver (DFR) Object.

S---}
FROM GrpMod IMPORT QueueObj;
FROM ListMod IMPORT QueueList;
FROM pulsegenerator IMPORT PulseTrainObj;
FROM pulsegenerator IMPORT PulseObj;
FROM Presorter IMPORT DFCObj;

EXPORTTYPE
DFRObj = OBJECT; FORWARD;
AngleRecType = RECORD; FORWARD;

TYPE
BufferBeamRecType=RECORD

orientation : REAL;
power : REAL;
time : REAL;

END RECORD;

BufferRecList=OBJECT(QueueList[ANYREC
BufferBeamRecType]);

END OBJECT;

BufferBeamObj=OBJECT (QueueList (ANYREC
BufferBeamRecType]);

END OBJECT;

BeamPortObj=OBJECT;
orientation : REAL;
gain : REAL;
ASK METHOD SetField(IN

BeamPortOrientation:REAL);
END OBJECT;

BeamPoreQueueObj=OBJECT(QueueObj
(ANYOBJ:BeamPortObj]);

END OBJECT;

AngleRecType=RECORD
ANGLE : REAL;
Time : REAL;
Power : REAL;
Powerl : REAL;

END RECORD;

50

DFRObj =OBJECT;

threshold : REAL;
AngleRec : AngleRecType;
DFC : DFCObj;
I : INTEGER;
BeamPort : BeamPortObj;
BeamPortOr jentat ion: REAL;
BufferBeam : BufferBeamobj;
BeamPortQueue : BeamPortQueueObj;

TELL METHOD DetermineAOA(IN
BufferBeam: BufferBeamObj);

ASK METHOD DFCinit (IN DFCNEW: DFCObj);
ASK METHOD DeliverRecord(IN

AngleRec :AngleRecType);
ASK METHOD Objlnit;
ASK METHOD ReceivePulse(IN pulse:

PulseObj);
END OBJECT;

END MODULE.

51

IMPLEMENTATION MODULE DFR;
{--

DESCRIPTION:
This is a implementation module of the Test simulation that
implements the Direction Finding Receiver Object.

S--- }
FROM SimMod IMPORT SimTime;
FROM pulsegenerator IMPORT PulseObj;
FROM Presorter IMPORT DFCObj;
FROM BuildBeamPortRec IMPORT BuildBeamPortRec;
FROM FindPulseGroup IMPORT FindPulseGroup;
FROM ProcessPulseGroup IMPORT ProcessPulseGroup;
FROM BuildAngleRec IMPORT BuildAngleRec;
FROM Debug IMPORT TraceStream;
FROM Globals IMPORT RECEIVEPULSE;

OBJECT BeamPortObj;
f ---
ASK METHOD SetField(IN BeamPortOrientation: REAL);
S---}
BEGIN

orientation:=BeamPortOrientation;
END METHOD;
END OBJECT;{BeamPortObj}

OBJECT DFRObj;
{ -- }
ASK METHOD ObjInit;
f{--}
BEGIN
NEW(BeamPortQueue);
FOR I := 0 TO 3600 BY 56

NEW(BeamPort);
BeamPortOrientation:=(FLOAT(I))/10.0 + 2.8;
ASK BeamPort SetField(BeamPortOrientation);
ASK BeamPortQueue TO Add(BeamPort);

END FOR;
NEW(BufferBeam);
END METHOD;

{---}
ASK METHOD ReceivePulse(IN pulse:PulseObj);
{---}

VAR
ANG : REAL;
P : REAL;
BeamRec : BufferBeamRecType;

52

BEGIN
RECEIVEPULSE:=FALSE;
IF (BufferBeam.numberIn < 2)

RECEIVEPULSE:=TRUE;
ANG:=ASK pulse Angle;
P:=ASK pulse Power;
BeamPort:=ASK BeamPortQueue First();
WHILE NOT (BeamPort=NILOBJ)

BuildBeamPortRec(BeamPort,ANG,P,BeamRec);
BeamPort:=ASK BeamPortQueue

Next(BeamPort);
IF (BeamRec.power > 0.1) AND

(BufferBeam.numberIn < 2)
ASK BufferBeam TO Add(BeamRec);

END IF;
END WHILE;

OUTPUT("I AM HERE");
TELL (SELF) TO DetermineAOA(BufferBeam);

END IF;
END METHOD;

--- }
TELL METHOD DetermineAOA(IN BufferBeam:BufferBeamObj);
{--- --- }

VAR
PulseGroup : BufferRecList;
ANG,Power,Powerl,time : REAL;

BEGIN
FindPulseGroup(BufferBeam,PulseGroup);
ProcessPulseGroup

(PulseGroup,ANG,time,Power,Powerl);
BuildAngleRec(ANG,time,Power,Powerl,AngleRec);
IF AngleRec<> NILREC

ASK(SELF) DeliverRecord(AngleRec);
END IF;

END METHOD;

-- }
ASK METHOD DFCinit(IN DFCNEW : DFCObj);
-- }

BEGIN
DFC:=DFCNEW;

END METHOD;
{ -- }
ASK METHOD DeliverRecord(IN AngleRec:AngleRecType);
{ -- }

BEGIN
ASK DFC TO ReceiveARecord(AngleRec);

END METHOD;
END OBJECT;
END MODULE.

53

DEFINITION MODULE Bui ldBeamPortRec;

FROM DFR IMPORT BufferBeamRecType,BeamPortObj;

PROCEDURE BuildBeamPortRec (IN BeamPort: BeamPortObj;
IN ANG:REAL;
IN P :REAL;
OUT BeamRec : BufferBeamRecType);

END MODULE.

f{--}

IMPLEMENTATION MODULE BuildBeamPortRec;

FROM DFR IMPORT BufferBeamRecType,BeamPortObj;
FROM DeamPortGairi IMPORT BeamPortGain;
FROM SimMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

PROCEDURE BuildBeamPortRec(IN BeamPort:BeamPortObj;
IN ANG:REAL;
IN P :REAL;
OUT BeamRec : BufferBeamRecType);

VAR
theta REAL;

Orientation : REAL;
AntennaGain : REAL;

BEGIN
Orientation: =ASK BeamPort orientation;
ASK TraceStream TO WriteString

("BeamPortorientation" + "is" +
REALTOSTR(Orientation));

ASK TraceStream TO WriteLn;
theta: =ABS (ANG-Orientation);
ASK TraceStream TO WriteString ("theta" + "is"

+REALTOSTR(theta));
ASK TraceStream TO WriteLn;
NEW (BeamRec) ;
BeamRec. orientation: = Orientation;
BeamRec. power: =P* (BeamPortGain (theta));
ASK TraceStream To WriteString ("BeamRecPower"

+ "is" + REALTOSTR(P* (BeamPortGain (theta))));
ASK TraceStream TO WriteLn;

BeamRec.time:=SimTimeo;
END PROCEDURE;
END MODULE.

54

DEFINITION MODULE BeamPortGain;

PROCEDURE BeamPortGain (IN theta: REAL) : REAL;
END MODULE.

f{--}
IMPLEMENTATION MODULE BeamPortGain;

PROCEDURE BeamPortGain(IN theta:REAL):REAL;

BEGIN

IF (theta>5.6)

RETURN 0.0;
ELSE

RETURN(1.0-(theta/5.6));
END IF;

END PROCEDURE;
END MODULE.

55

DEFINITION MODULE FindPulseGroup;

FROM DFR IMPORT BufferBeamObj ,BufferRecList;

PROCEDURE FirxdPulseGroup(IN BufferBeam:BufferBeamObj;
OUT PulseGroup:BufferRecList);

END MODULE.

IMPLEMENTATION MODULE FindPulseGroup;

FROM DFR IMPORT Buf ferBeamObj, Buf ferRecList, Buf ferBeamRecType;
FROM Debug IMPORT TraceStream;

PROCEDURE FiridPulseGroup(IN BufferBeam:BufferBeamObj;
OUT PulseGroup: BufferRecList);

CONST
threshold = 0.1;
timetol = 0.01;
orientol = 5.8;

VAR
rec,recLast :BufferBeamRecType;
time,power : REAL;
powerl,orientation : REAL;

BEGIN
NEW(PulseGroup);
rec:-ASK BufferBeam Removed;
time: =rec. time;
orientation: =rec. orientation;
OUTPUT ("ORIENREFI, orientation);
recLast:=ASK BufferBeam Last();

WHILE (rec<>NILREC)
IF ((rec. power>threshold) AND ((time-rec. time) <timetol)

AND (ABS (orientation-rec. orientation) <orientol))
ASK PulseGroup TO Add(rec);

IF (rec=recLast)
EXIT;

END IF;
rec :=ASK BufferBeam Remove o;

ELSE
ASK BufferBeam TO Add(rec);

IF (rec = recLast)
EXIT;

END IF;
rec: =ASK BufferBeam Remove o;

END IF;
END WHILE;

END PROCEDURE;
END MODULE.

56

DEFINITION MODULE ProcessPulseGroup;

FROM DFR IMPORT BufferRecList;

PROCEDURE ProcessPulseGroup (IN PulseGroup: BufferRecList;
OUT ANG :REAL;
OUT time :REAL;
OUT Power:REAL;
OUT Power : REAL);

END MODULE.

I{--}
IMPLEMENTATION MODULE ProcessPulseGroup;

FROM DFR IMPORT DFRObj, BufferRecList, BufferBeamRecType;
FROM FindPulseGroup IMPORT FiridPulseGroup;
FROM Debug IMPORT TraceStream;
FROM SimMod IMPORT SimTime;

PROCEDURE ProcessPulseGroup (IN PulseGroup: BufferRecList;
OUT ANG :REAL;
OUT time :REAL;
OUT Power:REAL;
OUT Power : REAL);

CONST
VoltageGap =5.8;

VAR
PulseRec : BufferBeamRecType;
theta : REAL;
Orientation :REAL;
Orieritationi REAL;

BEGIN
PulseRec:=ASK PulseGroup First();
Power: =PulseRec. power;
Orientation: =PulseRec. orientation;
time:=PulseRec.time;
PulseRec:=ASK PulseGroup Next(PulseRec);
Powerl1: =PulseRec .power;
Orientation : =PulseRec. orientation;
IF (ABS (Power-Poweri) >VoltageGap)

IF (Power>Powerl)
ANG: =Orientation;

ELSE
ANG: =Orientationl;

END IF;
ELSE

ANG:=(Orientation+Orientationl) /2.0;
END IF;

END PROCEDURE;
END MODULE.

57

DEFINITION MODULE BuildAragleRec;

FROM DFR IMPORT AngleRecType;

PROCEDURE BuildAngleRec (IN ANG:REAL;
IN timetREAL;
IN Power:REAL;
IN Powerl:REAL;
OUT AngleRec :AngleRecType);

END MODULE.

f{--}
IMPLEMENTATION MODULE BuildAngleRec;

FROM DFR IMPORT AngleRecType;

PROCEDURE BuildAngleRec(IN ANG:REAL;
IN time:REAL;
IN Power:REAL;
IN Powerl:REAL;
OUT AngleRec:AngleRecType);

BEGIN
NEW(AngleRec);

AngleRec .ANGLE: =ANG;
AngleRec. Time: =time;
AngleRec. Power: =Power;
AngleRec. Powerl1: =Powerl;

END PROCEDURE;
END MODULE.

58

DEFINITION MODULE IFMMUX;
{ -- }

DESCRIPTION:
This is a definition module of Test simulation that defines
Frequency Measurement Receiver (IFMMUX) Object.

{ -- }
FROM GrpMod IMPORT QueueObj;
FROM pulsegenerator IMPORT PulseTrainObj,PulseObj;
FROM Presorter IMPORT DFCObj;

EXPORTTYPE
IFMMUXObj = OBJECT; FORWARD;
FreqRecType=RECORD; FORWARD;

TYPE
ChannelRecType=RECORD

Freq,LO,Time : REAL;
END RECORD;

ChannelObj=OBJECT;
FreqStart : REAL;
LOFreq : REAL;
ASK METHOD SetField(IN ChannelFreqStart:REAL);

END OBJECT;

ChannelQueueObj=OBJECT(QueueObj[ANYOBJ:ChannelObj]);
END OBJECT;

FreqRecType=RECORD
Freq : REAL;
Time : REAL;

END RECORD;

IFMMUXObj=OBJECT;
FreqRec : FreqRecType;
DFC : DFCObj;

I INTEGER;
Channel : Channelobj;
ChannelFreqStart : REAL;
ChannelQueue : ChannelQueueObj;
ASK METHOD ObjInit;
ASK METHOD ReceivePulse(IN pulse:PulseObj);

TELL METHOD MeasureFreq(IN pulse : PulseObj;
IN ChannelRec : ChannelRecType);

ASK METHOD DFCinit(IN DFCNEW:DFCObj);
ASK METHOD

DeliverRecord(INFreqRec:FreqRecType);
END OBJECT;

END MODULE.

59

IMPLFMENTATION MODULE IFMMUX;
{--

DESCRIPTION:
This is an implementation module of the Test simulation that
implements the Frequency Measurment Receiver (IFMMUX) Object.

f--
FROM MathMod IMPORT SIN,COS,ATANpi;
FROM pulsegenerator IMPORT PulseObj;
FPOM Presorter IMPORT DFCObj;
FROM DerivedLOFreq IMPORT DerivedLOFreq;
FROM RFDownConverted IMPORT RFDownConverted;
FROM BuildFreqRec IMPORT BuildFreqRec;
FROM Debug IMPORT TraceStream;
FROM Globals IMPORT RECEIVEPULSE;

OBJECT CnannelObj;
{ --- }
ASK METHOD SetField(IN ChannelFreqStart:REAL);
f{--}
BEGIN

FreqStart:=ChannelFreqStart;
LOFreq:=DerivedLOFreq(FreqStart);

END METHOD;
END OBJECT;{ChannelObj}

OBJECT IFMMUXObj;

{ --- }
ASK METHOD ObjInit;
{ --- }
BEGIN
NEW(ChannelQueue);
FOR I:=2000 TO 16000 BY 2000

NEW(Channel);
ChannelFreqStart:=FLOAT(I);
ASK Channel SetField(ChannelFreqStart);
ASK ChannelQueue TO Add(Channel);

END FOR;

END METHOD;

60

ASK METHOD ReceivePulse(IN pulse:PulseObj);
{---}

VAR
F : REAL;
FStart : REAL;
LOF : REAL;
ChannelRec : ChannelRecType;

BEGIN
IF (RECEIVEPULSE)

F:=ASK pulse Freq;
Channel:=ASK ChannelQueue First);
FStart:=ASK Channel FreqStart;
LOF :=ASK Channel LOFreq;
WHILE NOT(Channel=NILOBJ)

IF (F<(FStart+2000.0))
EXIT;

END IF;
Channel:=ASK ChannelQueue Next(Channel);
FStart:=ASK Channel FreqStart;
LOF :=ASK Channel LOFreq;

END WHILE;
RFDownConverted(F,LOF,ChannelRec);

TELL (SELF) TO MeasureFreq(pulse,ChannelRec);
END IF;

END METHOD;

--- }
TELL METHOD MeasureFreq(IN pulse : PulseObj;

IN ChannelRec :ChannelRecType);
--- }

CONST
TOU = 0.000045;

VAR
IFreq,theta,A,E,F,f,LOFREQ : REAL;
FREQ,TIME,timeinterval : REAL;

BEGIN
IFreq:=ChannelRec. Freq;
theta:=2.0*pi*IFreq*TOU;
A:=ASK pulse Power;
E:=A*SIN(theta); {This is measured value -n

IFMCFR assembly,
F:=A*COS(theta); {This is measured value in

IFMCFR assembly}
f:=ABS((ATAN(E/F))/(2.0*pi*TOU));
LOFREQ:=ChannelRec. LO;
FREQ:=f-LOFREQ;

61

TIME:=ChannelRec.Time;
BuildFreqRec(FREQ,TIME,FreqRec);
IF FreqRec<> NILREC

ASK(SELF) DeliverRecord(FreqRec);
END IF;

END METHOD;

{---}
ASK METHOD DFCinit(IN DFCNEW : DFCObj);
-- }

BEGIN
DFC:=DFCNEW;

END METHOD;
{ -------------- }
ASK METHOD DeliverRecord(IN FreqRec:FreqRecType);
{------------------------------------ ------- }

BEGIN
ASK DFC TO ReceiveFRecord(FreqRec);

END METHOD;

END OBJECT;

END MODULE.

62

DEFINITION MODULE DerivedLOFreq;

PROCEDURE DerivedLOFreq (IN FreqStart: REAL) : REAL;
END MODULE.

{ --- }
IMPLEMENTATION MODULE DerivedLOFreq;

PROCEDURE DerivedLOFreq (IN FreqStart: REAL) : REAL;

BEGIN
IF (FreqStart<4000.0)

RETURN (2000.0);

ELSIF (FreqStart<6000.0)
RETURN (0.0);

ELSIF (FreqStart<8000.0)
RETURN (-2000.0);

ELSIF (FreqStart<10000.0)
RETURN (-4000.0);

ELSIF (FreqStart<12000.0)
RETURN (-6000.0);

ELSIF (FreqStart<14000.0)
RETURN (-8000.0);

ELSIF (FreqStart<16000.0)
RETURN (-10000.0);

ELSE
RETURN (-12000.0);

END IF;

END PROCEDURE;
END MODULE.

63

DEFINITION MODULE RFDownConverted;

FROM IFMMUX IMPORT ChannelRecType;

PROCEDURE RFDownConverted(IN F : REAL;
IN LOF : REAL;
OUT ChannelRec : ChannelRecType);

END MODULE.

{ --- }
IMPLEMENTATION MODULE RFDownConverted;

FROM IFMMUX IMPORT ChannelRecType;
FROM SimMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;

PROCEDURE RFDownConverted(IN F : REAL;
IN LOF : REAL;
OUT ChannelRec : ChannelRecType);

VAR
IFreq : REAL;

BEGIN
IFreq:=F+LOF;
NEW(ChannelRec);
ChannelRec. Freq:=IFreq;
ChannelRec.LO:=LOF;
ChannelRec.Time:=SimTime();

END PROCEDURE;
END MODULE.

64

DEFINITION MODULE BuildFreqRec;

FROM IFMMUX IMPORT FreqRecType;

PROCEDURE BuildFreqRec(IN FREQ : REAL;
IN TIME : REAL;
OUT FreqRec : FreqRecType);

END MODULE.

{ -- }
IMPLEMENTATION MODULE BuildFreqRec;

FROM IFMMUX IMPORT FreqRecType;

PROCEDURE BuildFreqRec(IN FREQ : REAL;
IN TIME : REAL;
OUT FreqRec : FreqRecType);

BEGIN
NEW(FreqRec);

FreqRec.Freq:=FREQ;
FreqRec.Time:=TIME;

END PROCEDURE;
END MODULE.

65

DEFINITION MODULE Presorter;
{ --- }

DESCRIPTION:
This is a definition module of the Test simulation that
defines Display-Processor Group (Presorter) Object.

{ --- }
FROM ListMod IMPORT QueueList;
FROM DFR IMPORT AngleRecType,DFRObj;
FROM IFMMUX IMPORT FreqRecType,IFMMUXObj;
FROM ECH IMPORT ECMObj;

EXPORTTYPE
DFCObj = OBJECT; FORWARD;

TYPE

PulseRecType=RECORD
Time : REAL;
Angle : REAL;
Freq : REAL;
Power : REAL;
Powerl : REAL;

END RECORD;

BufferRecList=OBJECT(QueueList [ANYREC: PulseRecType]);
END OBJECT;

PulseRecBufferObj=OBJECT(QueueList [ANYREC
PulseRecType));

END OBJECT;

DPUObj=OBJECT;
ECM : ECMObj;
DPUPDWBuffer : BufferRecList;
BufferNext : BufferRecList;
Processor : BufferRecList;
ProcessInterval:REAL;
PROCESSED:BOOLEAN;
ASK METHOD ObjInit;
TELL METHOD Process;
ASK METHOD GetBuffer(IN Buffer:BufferRecList ;

IN DTUPDWBuffer:BufferRecList);
ASK METHOD FindParameter;
ASK METHOD ECMinit(IN ECMNEW: ECMObj);
ASK METHOD InitiateECM(IN ANG:REAL;

IN TECH:STRING);
END OBJECT;

66

DTUObj =OBJECT;
EFM : BufferRecList;
PollingInterval: REAL;
DTUPDWBuffer : BufferRecList;
Buffer : BufferRecList;
DPU:DPUObj;
ASK METHOD Objlnit;
TELL METHOD Poll;
TELL METHOD GetBuffer(IN

PDWBuffer: BufferRecList);
ASK METHOD DeclareContact;
ASK METHOD BufferSort;

END OBJECT;

DFCObj=OBJECT;
MATCH: BOOLEAN;
PDWBuffer :BufferRecList;
PulseRec :PulseRecType;
PulseRecBuffer : PulseRecBufferobj;
DTU:DTUObj;
ASK METHOD Objlnit;
ASK METHOD ReceiveFRecord(IN

FreqRec: FreqRecType);
ASK METHOD ReceiveARecord(IN AngleRec :

AngleRecType);

ASK METHOD Correlate;

END OBJECT;

END MODULE.

67

IMPLEMENTATION MODULE Presorter;
{ --- }

DESCRIPTION:
This is an implementation module of the Test simulation that
implements the Display-Processor Group (Presorter) object.

{ --- }
FROM pulsegenerator IMPORT PulseObj;
FROM DFR IMPORT AngleRecType,DFRObj;
FROM IFMMUX IMPORT FreqRecType,IFMMUXObj;
FROM ECM IMPORT ECMObj;
FROM BuildPulseFreqRec IMPORT BuildPulseFreqRec;
FROM BuildPulseAngRec IMPORT BuildPulseAngRec;
FROM BuildPDWRec IMPORT BuildPDWRec;
FROM MathMod IMPORT e;
FROM SimMod IMPORT SimTime;
FROM Debug IMPORT TraceStream;
FROM ObjMod IMPORT ObjectDump;
FROM RGlobals IMPORT SHierRecType,EmitterSHArray;
FROM Input IMPORT ReadEmAll;
FROM FindSH IMPORT FindSHRec;

OBJECT DFCObj;

{ --- }
ASK METHOD ObjInit;
{---}

BEGIN
NEW(DTU);
NEW(PulseRecBuffer);
NEW(PDWBuffer);
END METHOD;

{---}
ASK METHOD ReceiveFRecord(IN FreqRec: FreqRecType);
{---}

VAR
TIME,ANG,FREQ:REAL;

BEGIN
BuildPulseFreqRec(FreqRec,PulseRec);
TIME:=PulseRec.Time;
ANG:=PulseRec.Angle;
FREQ:=PulseRec. Freq;
ASK PulseRecBuffer TO Add(PulseRec);
ASK(SELF) TO Correlate;

END METHOD;

68

f{-- - -- - - - - --- - - - - - - - - - - - - - - - - - - -
ASK METHOD ReceiveARecord (IN AngleRec: AngleRecType);
{---

VAR
TIME,ANG, FREQ:REAL;

BEGIN
BuildPulseAngRec (AngleRec, PulseRec);
TIME: -PulseRec. Time;
ANG:=PulseRec.Angle;
FREQ: -PulseRec. Freq;
ASK PulseRecBuffer TO Add(PulseRec);

END METHOD;

{--}
ASK METHOD Correlate;
{--}

CONST
tolerance=O. 05;

VAR
rec, rec2 ,Oldrec,Oldrec2, PDWRec :PulseRecType;
Time,Angle, Freq, Freqi, Freq2 ,TIME :REAL;
ANG,FREQ,TIME1,ANG1,FREQ1 :REAL;

Pe, Poweri REAL;
numberRec :INTEGER;

BEGIN
I4ATCH:=FALSE;
rec:=ASK PulseRecBuffer First();
WHILE (rec <> NILREC)

rec2 :=rec;
WHILE (NOT MATCH) AND (rec2 <> NILREC)

rec2:=ASK PulseRecBuffer Next(rec2);
IF (rec2=NILREC)

EXIT;
END IF;
IF (ABS (rec. Time-rec2 .Time) < tolerance)

Time: =rec .Time;
Angle:=rec.Angle+rec2 .Arigle;
Freq: =rec. Freq+rec2.Freq;
Power :=rec. Power+rec2 .Power;
Power 1: =rec. Powerl+rec2 .Power 1;

BuildPDWRec (Time,Angle, Freq,Power,Powerl,PDWRec);
MATCH: =TRUE;

IF PDWRec<>NILREC
ASK PDWBuffer TO Add(PDWRec);

END IF;

69

END I F;
END WHILE;
IF (NOT MATCH)

rec:=ASK PulseRecBuffer Next(rec);

ELSE
Oldrec: =rec;
oldrec2 :=rec2;

Freq: =Oldrec. Freq;
Freq2 :=Oldrec2 .Freq;
rec :=ASK PulseRecBuffer Next (Oldrec);
Freqi :=rec. Freq;
IF (rec <> Oldrec2)

ASK PulseRecBuffer TO RemoveThis(rec);
ASK PulseRecBuf fer To RemoveThis (Oldrec) ;

ELSE
rec:=ASK PulseRecBuffer Next(Oldrec2);
ASK PulseRecBuf fer TO RemoveThis (Oldrec) ;
ASK PulseRecBuffer TO RemoveThis(rec2);

END IF;

END IF;
MATCH: =FALSE;

END WHILE;

TELL DTU TO GetBuffer(PDWBuffer);
END METHOD;
END OBJECT;

OBJECT DTUObj;

({--}
ASK METHOD Objlnit;

--- }
BEGIN

NEW(DPU);
NEW (DTUPDWBuffer);
NEW(EFM);
NEW (Buffer);
PollingInterval: =50.0;
TELL SELF TO Poll;

END METHOD;

70

{ }
TELL METHOD Poll;

-- }
BEGIN

WAIT DURATION PollingInterval
END WAIT;
ASK SELF TO BufferSort;

END METHOD;
{--}
TELL METHOD GetBuffer(IN PDWBuffer:BufferRecList);
{--}

BEGIN

DTUPDWBuffer:=PDWBuffer;

END METHOD;

{--}
ASK METHOD DeclareContact;
{--}

VAR
rec:PulseRecType;

BEGIN

rec:=ASK EFM First);
IF (rec<>NILREC)

ASK Buffer Add(rec);
ASK EFM RemoveThis(rec);

END IF;
rec:=ASK EFM First();

WHILE(rec<>NILREC)
ASK EFM RemoveThis(rec);
rec:=ASK EFM First);

END WHILE;

ASK DPU TO GetBuffer(Buffer,DTUPDWBuffer);
END METHOD;

{--
ASK METHOD BufferSort;
{--}

CONST
AngleTol=0.5;
FreqTol=0.5;

VAR
TIME,ANG,FREQ,Time,Angle,Freq : REAl;
TimeFirst,TimeLast,TIMEIF,TIMEELSE REAL;
rec,EFMRec,DisRec : PulseRecType;
RecFirst,RecLast,recLast : PulseRecType;

71

numberRec : INTEGER;

BEGIN
rec : ASK DTUPDWBuffer Remove o;

TIME: =rec .Time;
ANG:=rec.Angle;
FREQ:=rec.Freq;

WHILE (rec<>NILREC)

recLast: =ASK DTUPDWBuffer Last o;

WHILE (rec<>NILREC)

IF (ABS(ANG-rec.Angle)<AngleTol) AND
(ABS (FREQ-rec. Freg) <FreqTol)

ASK EFM TO Add(rec);

IF (rec = recLast)
EXIT;

END IF;

rec: =ASK DTUPDWBuffer Remove o;
TIMEIF: =rec. Time;

ELSE
ASK DTUPDWBuffer TO Add (rec);
IF (rec = recLast)

EXIT;
END IF;
rec :=ASK DTUPDWBuffer Remove o;
TIMEELSE: =rec. Time,

END IF;

END WHILE;
numberRec:=ASK EFM numberln;
RecFirst:=ASK EFM Firsto;
TimeFirst: =RecFirst .Time;
RecLast:=ASK EFM Lasto;
TimeLast: =RecLast.Time;

IF (numberRec<3)
DisRec:=ASK EFM Firsto;
WHILE (DisRec<>NILREC)

ASK EFM RemoveThis (DisRec);
DISPOSE(DisRec);
DisRec:=ASK EFM Firstoa;

END WHILE;

72

ELSE
ASK SELF DeclareContact;

END IF;

rec:=ASK DTUPDWBuffer First(;
IF(rec<>NILREC)

TIME:=rec.Time;
ANG:=rec.Angle;
FREQ:=rec. Freq;
ASK DTUPDWBuffer RemoveThis(rec);

END IF;
END WHILE;

END METHOD;
END OBJECT;

OBJECT DPUObj;
{ --- }
ASK METHOD ObjInit;
{--}

BEGIN
NEW(DPUPDWBuffer);
NEW(Processor);
NEW(BufferNext);
ProcessInterval:=50.0;
PROCESSED:=FALSE;

END METHOD;

{--}
ASK METHOD GetBuffer(IN Buffer :BufferRecList;

IN DTUPDWBuffer:BufferRecList);
{--}
VAR

recl : PulseRecType;
BEGIN

DPUPDWBuffer:=DTUPDWBuffer;
BufferNext:=Buffer;
IF NOT(PROCESSED)

TELL SELF TO Process;
END IF;

END METHOD;

{ -- }
TELL METHOD Process;
{--}

BEGIN
WAIT DURATION ProcessInterval
END WAIT;
ASK SELF FindParameter;

END METHOD;

73

ASK METHOD FindParameter;
--- }
CONST

AngleTol=O. 5;
FregTol=O. 5;

VAR
PRI,TimeFirst,TimeLast,ANG,FREQ,TIME REAL;
RecFirst, RecLast, rec, recLast : PulseRecType;
RecProcessed,recl PulseRecType;
N INTEGER;
EmitterSHRec SHierRecType;
Name,TECH,IFF,Hostile STRING;

BEGIN

NEW(ECM);
recl:=ASK BufferNext Firsto;
IF (recl<>NILREC)

rec:=ASK BufferNext Removeo;

TIME: =rec. Time;
ANG: =rec .Angle;
FREQ: =rec. Freq;

WHILE (rec'<>NILREC)
rec:=ASK DPUPDWBuffer Removeo;
recLast:=ASK DPUPDWBuffer Last();

WHILE (rec<>NILREC)
IF (ABS (ANG-rec.Angle) <AngleTol) AND

(ABS (FREQ-rec. Freq) <FreqTol)
ASK Processor TO Add(rec);
IF (rec = recLast)

EXIT;
END IF;
rec :=ASK DPUPDWBuffer Remove 0;

ELSE
ASK DPUPDWBuffer TO Add(rec);
I^U^A (*^'U*+* ecLast)

EXIT;
END IF;
rec: =ASK DPUPDWBuffer Remove 0;

END IF;

END WHILE;

N:=ASK Processor numberln;

RecFirst:=ASK Processor First);

74

TimeFirst: =RecFirst .Time;
RecLast:=ASK Processor Last();
TimeLast: =RecLast. Time;
PRI:=(TimeLast-TimeFirst) / FLOAT(N-1);

RecProcessed :=ASK Processor First o;
WHILE (RecProcessed<> NILREC)

ASK Processor RemoveThis (RecProcessed);
RecProcessed:=ASK Processor First();

2ND WHILE;
ReadEmAll;
FindSHRec (EmitterSHArray, PRI, FREQ,

EmitterSHRec);
IF (EmitterSHRec<>NILREC)
Name :=EmitterSHRec .TopString;
1FF: =ExnitterSHRec .OwnedString [73;
TECH: =EmitterSHRec. OwnedString (8);

ASK SELF ECMinit(ECM);

IF ((1FF = "Hostile") AND (8000.0 <= FREQ)
AND (FREQ <=12000.0))

ASK SELF TO InitiateECM(ANG,TECH);
END IF;

END IF;
rec:=ASK BufferNext First();
IF (rec<>NILREC)

TIME: =rec.Time;
ANG: =rec.Angle;
FREQ: =rec. Freq;
ASK BufferNext RemoveThis (rec);

END IF;

IF (rec = NILREC)
PROCESSED:=TRUE;

END IF;
END WHILE;

END IF;
END METHOD;

f{--}
ASK METHOD ECMinit(IN ECMNEW:ECMObj);
-- }
BEGIN

ECM: =ECMNEW;
END METHOD;

75

ASK METHOD InitiateECM(IN ANG:REAL;
IN TECH: STRING);

--- }
BEGIN

ASK ECM TO Jam(TECH,ANG);
END METHOD;

END OBJECT;

END MODULE.

76

DEFINITION MODULE BuildPDWRec;

FROM Presorter IMPORT PulseRecType;

PROCEDURE BuildPDWRec(IN Time : REAL;
IN Angle: REAL;
IN Freq : REAL;
IN Power: REAL;
IN Powerl : REAL;
OUT PDWRec : PulseRecType);

END MODULE.

{ --- }
IMPLEMENTATION MODULE BuildPDWRec;

FROM Presorter IMPORT PulseRecType;

PROCEDURE BuildPDWRec(IN Time : REAL;
IN Angle: REAL;
IN Freq : REAL;
IN Power: REAL;
IN Power1 : REAL;
OUT PDWRec : PulseRecType);

BEGIN
NEW(PDWRec);

PDWRec.Time:=Time;
PDWRec.Angle:=Angle;
PDWRec. Freq:=Freq;
PDWRec.Power:=Power;
PDWRec.Powerl:=Powerl;

END PROCEDURE;
END MODULE.

77

DEFINITION MODULE FindSH;

FROM RGlobals IMPORT SHierRecType,SHArrayType;

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN PRI : REAL;
IN FREQ: REAL;
OUT SHRec :SHierRecType);

END MODULE.

f{--}
IMPLEMENTATION MODULE FindSH;
FROM RGlobals IMPORT SHierRecType,SHArrayType;
FROM Debug IMPORT TraceStream;

PROCEDURE FindSHRec (IN SHArray : SHArrayType;
IN PRI :REAL;
IN FREQ :REAL;
OUT SHRec :SHierRecType);

VAR
ThisRec SHierRecType;
i :INTEGER;
PRILO, PRIHIGH,FREQLO, FREQHIGH : STRING;

BEGIN

NEW(SHRec);
i :=O;
REPEAT

INC(i);
ThisRec:=SHArray(i];
FREQLO: =ThisRec .OwnedString[1];
FREQHIGH: =ThisRec .OwnedString[(2);
PRILO: =ThisRec .OwnedString (3];
PRIHIGH: =ThisRec.OwnedString (4);

UNTIL ((i >= HIGH(SHArray)) OR ((STRTOREAL(PRILO)<=PRI)
AND (STRTOREAL (PRIHIGH) >=PRI) AND (STRTOREAL (FREQLO) <=FREQ)
AND (STRTOREAL (FREQHIGH) >=FREQ)));

IF ((STRTOREAL (PRILO) <=PRI) AND (STRTOREAL (PRIHIGH) >=PRI)
AND (STRTOREAL (FREQLO) <=FREQ) AND (STRTOREAL (FREQHIGH) >=FREQ))

SHRec := ThisRec;
ELSE

OUTPUT("SHRec is a NILREC!");
SHRec :=NILREC;

END IF;

END PROCEDURE;
END MODULE.

78

DEFINITION MODULE Input;

PROCEDURE ReadEmAll;
END MODULE.

f{--------- -- }
IMPLEMENTATION MODULE Input;
FROM RGlobals IMPORT FileNameType,SHierRecType;
FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGlobals IMPORT MasterFileName,EmitterSHArray;
FROM ReadLst IMPORT ReadLst;
FROM Debug IMPORT TraceStream;

VAR
EmitterFileName : FileNameType;

{--}
PROCEDURE ReadEmitterLib;
f{---}
BEGIN

ASK TraceStream TO WriteString("EmitterLib");
ASK TraceStream TO WriteLn;
ReadLst(EmitterSHArray, EmitterFileName);

END PROCEDURE;

{---}
PROCEDURE ReadEmAll;
{ -- }VAR

File : StreamObj;
str : STRING;

BEGIN
NEW(File);
ASK File TO Open(MasterFileName, Input);
ASK File TO ReadString(EmitterFileName);
ASK File TO ReadLine(str);
ReadEmitterLib;

END PROCEDURE;
END MODULE.

79

DEFINITION MODULE ReadSH;

FROM RGlobals IMPORT SHierRecType;
FROM IOMod IMPORT StreamObj;

PROCEDURE ReadSH(IN File : StreamObj;
OUT SHierRec : SHierRecType;
OUT error : BOOLEAN);

END MODULE.

{ --- }
IMPLEMENTATION MODULE ReadSH;

FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGlobals IMPORT SHierRecType;
FROM Debug IMPORT TraceStream;
FROM IOMod IMPORT ReadKey;

PROCEDURE ReadSH(IN File : StreamObj;
OUT SHierRec : SHierRecType;
OUT error BOOLEAN);

TYPE
StringRecType = RECORD

String : STRING;
Next StringRecType;

END RECORD;

VAR
string : STRING;
numberOfStrings : INTEGER;
StringRec, OldStringRec : StringRecType;
first : StringRecType;
arrow : STRING;
stringRec : StringRecType;
i : INTEGER;

BEGIN
NEW(SHierRec);
ASK File TO ReadString(SHierRec.TopString);
ASK TraceStream TO WriteString("Top string is" +

SHierRec.TopString + " ");
ASK TraceStream TO WriteLn;

NEW(StringRec);
numberOfStrings :=1;
first := StringRec;

ASK File TO ReadString(arrow);

80

IF (arrow <>"-)
OUTPUT("'File not formatted correctly");
error :=TRUE;
RETURN;

ELSE
error :=FALSE;

END IF;

WHILE (string <>"\)
ASK File TO ReadStririg(string);
IF (string = ."

ASK File TO ReadLine(string);
ELSE

OldStringRec := StringRec;
StringRec.String := string;
NEW(StringRec);
OldStringRec.Next : =StringRec;
numberOf Strings: =numberOfStrings + 1;

END IF;
END WHILE;

ASK File TO ReadLine(string);
IF ((numberOfStrings > 0) AND NOT error)

NEW(SHierRec.OwnedString, 1. .numberOf Strings -2);
stringRec :=first;
FOR i:=1 TO numberOfStrings -2

SHierRec .OwnedString [i] : =stringRec. String;
stringRec := stringRec.Next;

END FOR;
END IF;
ASK TraceStream TO WriteLn;

END PROCEDURE;
END MODULE.

81

DEFINITION MODULE ReadLst;

FROM RGlobals IMPORT SHArrayType,FileNameType;

PROCEDURE ReadLst(INOUT SHArray : SHArrayType;
IN FileName : FileNameType);

END MODULE.

{ --- }
IMPLEMENTATION MODULE ReadLst;

FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM RGlobals IMPORT SHArrayType,FileNameType;
FROM ReadSH IMPORT ReadSH;
FROM Debug IMPORT TraceStream;

PROCEDURE ReadLst(INOUT SHArray : SHArrayType;
IN FileName : FileNameType);

VAR
File : StreamObj;
numberOfSH : INTEGER;
i : INTEGER;
error : BOOLEAN;
string STRING;

BEGIN
NEW(File);
ASK File TO Open(FileName, Input);

ASK File TO ReadInt(numberOfSH);
ASK File TO ReadLine(string);
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;

NEW(SHArray, l..numberOfSH);
FOR i :=1 TO numberOfSH

ASK TraceStream TO WriteString("rec" + INTTOSTR(i));

ASK TraceStream TO WriteLn;
ReadSH(File, SHArray(i], error);
IF error

OUTPUT("problem reading file", FileName,
"BAD FORMAT DETECTED.");

END IF;
END FOR;

END PROCEDURE;

END MODULE.

82

DEFINITION MODULE RGlobals;

CONST
MasterFileName = "Master.dat";

TYPE
FileNameType = STRING;
SArrayType = ARRAY INTEGER OF STRING;

SHierRecType = RECORD
TopString : STRING;
OwnedString : SArrayType;

END RECORD;

SHArrayType = ARRAY INTEGER OF SHierRecType;

VAR
EmitterSHArray : SHArrayType;

END MODULE.

EMITTER LIBRARY:

3
spsl8 -> 9500.0 9550.0 9.0 11.0 USSR Surface Hostile BBN \\
sps58 -> 9450.0 9550.0 8.5 9.5 PROC Airbore Hostile SIN&BBN

srcll -> 8850.0 8950.0 12.5 13.5 PROC UnderWater Hostile
TRI&BBN \\

83

DEFINITION MODULE ECM;

TYPE
ECMObj =OBJECT;

ASK METHOD Jam(IN TECH : STRING;
IN ANG : REAL);

END OBJECT;

END MODULE.

I{--
IMPLEMENTATION MODULE ECM;

OBJECT ECMObj;
I{--}
ASK METHOD Jam(IN TECH : STRING;

IN ANG : REAL);
-- }

VAR
Technique: STRING;
Angle : REAL;

BEGIN
Technique:=TECH;
OUTPUT(("Technique IN ECM DURING JAMMING ",Technique);
Angle :=ANG;
OUTPUT("Angle",Angle);

END METHOD;
END OBJECT;
END MODULE.

84

DEFINITION MODULE DebugRun;

PROCEDURE SetUpD(IN TraceOn : BOOLEAN);

END MODULE.

{--}
IMPLEMENTATION MODULE DebugRun;

FROM IOMod IMPORT FileUseType(Output);
FROM Debug IMPORT TraceStream;
FROM UtilMod IMPORT DateTime;
I -- }
PROCEDURE SetUpD(IN TraceOn : BOOLEAN);
{--}

VAR
DT : STRING;

BEGIN
NEW(TraceStream);
ASK TraceStream TO Open ("debug.out", Output);

DateTime(DT);
ASK TraceStream TO WriteString(DT);
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;
ASK TraceStream TO WriteLn;

IF (TraceOn)
ASK TraceStream TO TraceOn;
OUTPUT(" ----- TRACE ON ------------
ASK TraceStream TO WriteString("Initially,

trace is on.");
ASK TraceStream TO WriteLn;

ELSE
ASK TraceStream TO TraceOff;
ASK TraceStream TO WriteString("Initially,

trace is off.");
ASK TraceStream TO WriteLn;

END IF;
END PROCEDURE;

END MODULE.

85

LIST OF REFERENCES

1 Raytheon Company's Document Of Introduction Of Electronic
Defense System For THE REPUBLIC OF CHINA NAVY FFG Program,
Goleta, CA 93117.

2. Raytheon Company's Document of SLQ-32/SIDEKICK Operational
Description, Goleta, CA 93117.

3. CACI Products Company, MODSIM II, The language for Object-
Oriented Programming, Reference Manual, 1990 ed., 3344
North Torrey Pines Court, La Jolla, CA 92037.

4. Schleher,D.C., Introduction to Electronic Warfare, Artech
House Inc, 1986.

86

INITIAL DISTRIBUTION LIST

copies

a) Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

b) Naval Academy Library 2
Kau-Hsiung, Tso-Ying P.O. Box 90175
Taiwan, R.O.C.

c) Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

d) Chen-Kuo Li 2
Nei-Hu District, Cheng-kung Rd., Section 4,
Ave 61, Alley 19, #3,.4F.
Taipei, Taiwan, R.O.C.

e) Professor Michael P.Bailey, Code OR/BA 2
Naval Postgraduate School
Monterey, CA 93943-5000

f) Professor Alan R. Washburn, Code OR/WS 1
Naval Postgraduate School
Monterey, CA 93943-5000

g) Chairman, Code EW 1
Electronic Warfare Academic Group
Naval Postgraduate School
Monterey, CA 93943

h) Library 1
Chung Cheng Institute Of Technology
Tashi, Taoyuan County
Taiwan, R.O.C.

i) Wu, Tsung-Li 1
6-3 (4F) Lane 42, San-min Road, Section 1
Taoyuan City, Taiwan, R.O.C.

j) LCol. Miguel A. Betancourt R. 1
Calle Piar #37, Urb. Mario Briceno Iragorry
Maracay, Edo. Aragua, Venezuela

87

